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The infrared echo measurement distinguishes among vibrational line broadening processes according to their
time scales. Rigorous computation of the echo signal for a realistic model requires quantum dynamical
calculations for large anharmonic systems. The challenges posed by such calculations motivate the use of
classical mechanical or semiclassical approximations. The application of such approaches to compute the
vibrational echo signal depends on the nature and magnitude of quantum effects on the echo observable. We
quantify these effects for a generic model of an anharmonic oscillator coupled to a harmonic solvent in the
regimes of classical solvent and classical solute, classical solvent and quantum solute, and quantum solvent
and quantum solute.

Introduction effects of quantum mechanical solute dynamics on the echo
observable. In the present work, we investigate the role of quan-
etum mechanical solvent dynamics on the echo signal, by gener-
alizing the treatment of ref 17 to compute vibrational echoes
fora gquantum anharmonic oscillator interacting with a quantum
solvent.

pulse magnetic resonance technigliésThe vibrational echo,
the analog of the spin echo, probes the loss of phase coherenc
of a vibrational degree of freedom resulting from interactions

with its environment:38°9These dephasing dynamics encompass
both resonant and nonresonant energy tfansft_er processes, as Welliprational Echo from a Solvated Oscillator

as adiabatic pure dephasing processes, in which phase coherence

is lost without transfer of vibrational energy. Two and three ~ We treat a Morse oscillatétlinearly coupled to a harmonic
pulse vibrational echo measurements have been applied to prob&olvent with the Hamiltonian,

configurational dynamics in biomolecules and other liquid state

systemg:389 Complete interpretation of such measurements =~ p?  fwg z

requires the modeling of the nonlinear vibrational response of H = — + ——[1 — exp(—y/mA/A §)]° +

large anharmonic systems with an atomic level of détad. 2A

Since full quantum dynamical calculations for such systems are 1N pvz c,d\2

not feasible, practical calculations must make use of classical Z —+mfo (1)
mechanicdt* % or semiclassical treatments. It is therefore 25| m, mw,

necessary to analyze the nonlinear response of model anhar-

monic systems-'8that are sufficiently simple to permit both  Momentum, coordinate, and mass are den@tey) andmy for
quantum and classical treatments in order to understand thethe solute, ang,, §,, andm, for solvent degrees of freedom.
nature of quantum mechanical effects, and to map out the The conventional parameters of the Morse potential have been
regimes of applicability of less than fully quantum mechanical reexpressed in terms aofo, the harmonic frequendy,and A,
dynamical approaches. the difference between the—n + 1 andn + 1 — n + 2 tran-

We have previously computed the vibrational echo signal for sition frequencies of an unsolvated Morse oscillator. In ref 17,
such a model: a Morse oscillator coupled to a harmonic solvent we developed an analytical theory for the vibrational echo of
with an interaction that is bilinear in solute and solvent coor- this model, based on four assumptions. First, the solute fre-
dinatest” We assumed a separation of time scales between aquency is higher than relevant solvent frequencigsy? ..
high-frequency solute and a low-frequency solvent, so that only Within this assumption, the echo is governed by adiabatic, pure
pure dephasing processes were included. In that treatment, thelephasing processes, and the contributions of resonant energy
solvent was represented in the classical mechanical limit, andtransfer between solute and solvent are negligible. Second, the
solute parameters were varied from a fully classical regime to adiabatic solvent Hamiltonian resulting from the first assumption
a completely quantum mechanical one. The theory of ref 17 is evaluated to lowest order in solutsolvent coupling,. Third,
was shown to be quantitatively accurate in the fully classical the solute anharmonicity is assumed to be small< wo.
limit by comparison with numerically exact classical mechanical Fourth, the solvent is taken to be classical mechanical; the
calculation$® of the vibrational echo. We demonstratéthat thermal time scal@h, with § = 1/kgT, is assumed to be small
purely classical mechanical echo calculations are qualitatively compared to any relevant solvent time scale. Here, we generalize
correct for a high-frequency and nominally quantum mechanical the development of ref 17 by computing the third-order response
solute coupled to a classical solvent. This work elucidated the function for the model of eq 1 retaining the first three assump-
tions just described, but discarding the fourth assumption of a
 Part of the special issue “A. C. Albrecht Memorial Issue”. classical mechanical solvent.
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We briefly summarize the generalization of the vibrational
echo calculation in ref 17. To lowest order in solutmlvent Ry = &(ﬂnn#mbulk/"knexpﬂwot(n — m)lexpliwgr(m — K)] x
coupling, the adiabatic solvent Hamiltonian associated with the m
nth solute excited state is

A A
exp{| E ttm(m+ 1) — n(n + l)]} exp{l E tfk(k+ 1) —
N[
f=cit g D mwa?—2cam 600 (@) m(m+ D]t exp — (n — K)(m - KI(z) -

- —KI'{t) — (n— k—m)I'(t — 10
= R+ 12)—h (0 127 - (n—m)(n— ) — (01— m(k — mI ’)}Dn( )

The identity operator in the space of solvent states is denotedR, = &ﬂnmummk,ukn expliogt(l — K)lexpliwgr(n — 1)] x
I, and| nCrepresents an energy eigenstate of the isolated solute. m

The electric polarizatioP(t) generating the signal in a third- A A

order nonlinear optical measurement such as the vibrational echo XA ! Et[k(k+ -1+ Dlpexpi 5 il +1)—
may be computéd2°from the third-order response functigh*

ROty,tots), in which the tj denote elapsed times between n(n + )]} exp{ —(n — K)(n — 1 )['(z) —
successive interactions with the classical electric fE(t,

o o o n—K(-—KrE —n-—1 k—II“*t—rDll
P()= [ dt, ["dt, [ dts E(t —t, —t, — ty)E(t - (=l = r® = (0= 1)k = HI*( )}n( )

_ _ 3)
t~ WEL - HRYLE) (4) The thermal average of a quantty over bound states of the

. . . - isolated solute is given b
The signal in a two-pulse echo measurement in the limit of g y

impulsive excitation may be computed from this response

Nmax

function witht; = 7, the delay time between excitation pulses, b, exp(—fe.)

t; = 0, andtz; = t — 7, with t the detection time. This quantity & " n

is related to equilibrium correlation functions of the dipole bLl=——"— (12)
operatorit by?° Mmax

ZO exp(—fe,)
R(z,0t—7) = 2Im[2R + R, + R, ] (5) "~
The indexnmax is the quantum number of the highest energy
R = hfsm(O)ﬁ(r)ﬁ(t)/}(r)D (6) bound state of the Morse oscillator. The complex-valued solvent

relaxation kernel'(t) is defined by

R, = A i(Oi()i(r)(0)] ) Fhp i
O =0 Joor (RECEFIOREIC) I
Ry = h~*li(2)a(0)i(t)i(0)0 (8)
_ 3
with Im denoting the imaginary part of a complex number. F _‘U_o AIRf3 (14)
Angle brackets denote an average over the thermal density
matrix. )
Within the adiabatic approximation of eq 2, the thermal N C,
average over the harmonic solvent degrees of freedom in egs n(t) = Z cos, ) (15)
6—8 may be performed analytically. With an additional V= mvcu,,2

assumption of weak anharmonicity, as detailed in eq 23 of ref

17, the relevant dipole correlation functions are given b ®
P given by £ =% [ do  cospt) cotr(/%T‘”) i)  (16)

R = &ﬂmﬂmwwknexwwot(l = Klexp[— iwgr(l —k—

£ The classical mechanical solvent friction keffek(t) is

A defined in eq 15 and a dimensionless, temperature-dependent
m -+ n)]exp{i —tlk(k+1)—1 (1 + 1)]} x solute anharmonicityF is given in eq 14. Equation 16
2 contains the cosine transform of the friction kernglyp) =
Jo dt cost) n(t). Replacement of the relaxation kerrigf)
with its real-valuedh — 0 limit yields the approximation to the
response function employed in ref 17. We evaluate the dipole
k(k + 1)]} exp{—(h—m(n—m+1 —KI'(z) — matrix elements in eqs-911 by taking the dipole operator to
be proportional to the coordinatg, = e). These matrix
(n—m)(k — I*) — (I = K[l — MI*(t— 1) + elements are evaluated in the harmonic oscillator limit, in
keeping with the assumption of low anharmonidity.
(n—KI(t— r)]}D (9) The signalS(r) in the two-pulse vibrational echo in the limit
n of impulsive excitation is related to a complex-valued temporally

ex;{i%r[n(n—l—l)—m(m—l— D+HI1(0+1)—
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slowly varying electric polarization amplitugfeP(t,7) by

o) = [T dt P(to)? (17)
This polarization is connected to the response functioR(by)
= AlexpliQ(t — 2r)]RE)(7,0t—1), with A representing the time-
integrated electric field amplitude arfd denoting the central
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electric polarization. For the calculations presented in the next
section, N; is evaluated from egs 12 and 26 in a harmonic
approximation in whichnmax— o ande, — nfiwo. This approxi-
mation yields analytic expressions fi§yand is consistent with
the low anharmonicity approximation made elsewHé@om-
plete specification of the model of eq 1 requires identification
of the friction kernel® (t). We consider the limit of a continuum
solvent with friction kernel appropriate to an Ohmic density of

frequency of an excitation pulse. This expression is evaluated giates with an exponential cutoff in frequeridy

by retaining terms that oscillate trat Q — wo and neglecting
terms that oscillate im at Q + wo. Here, we sef2 = wq. For
the response function in eqs-21, this polarization amplitude
takes the form

A3e04
P(tr) = lT {AXe" T Y Hi(Xe = Yl +
4mywgh
AnreizlwOr [an” +Y,' i(xnr, - an')]} (18)

_2n_ 2
= e

(27)

For this choicefj(w) = n exp(—Aw). The solvent time scalé

is a measure of the width of the distribution of solvent fre-
guencies. The classical solvent limit of ref 17 is recovered by
taking thefh < A limit of eq 16 in which{(t) is proportional

to the classical friction{(t) — 25(t)/fh. Substitution of this
result into eq 13 results in a real-valuE(t) that is independent

analogous to eq 40 of ref 17. The contribution to the echo decay ¢ 1 The calculations of the echo signal in ref 17 were per-

from solvent dynamics is contained within thephasingand
nonrephasingsolvent relaxation function® Ae(t,7) and An(t),

formed using eqgs 17 and 18 wilk(t) in egs 19 and 20 replaced
by its A — 0 limit, andI"'(t) in eqgs 21, 22, 24, and 25 set to

while the solute contribution to the echo dynamics is contained ;6,4 | the next section, we present calculation§(of using

within the complex-valued function¥(t,7), Yi(t,7), Xu(t,7),

andY(t,r). The real and imaginary parts of a complex-valued

quantity are defined bX = X' + iX".
The solvent relaxation functions are given by
A(tr)=exp[-2["(z) — 2"t —7) + I'()] (19)

Ane(t) = exp[-T"(1)] (20)

the full quantum expression fdr(t) in eq 13.

Numerical Results

The importance of quantum mechanics to the vibrational echo
signal for the model specified by eqs 1 and 27 is determined
by the relative magnitudes of three time scalgs; the quantum
mechanical thermal time scalg; the time scale in eq 27 that
determines the width of the distribution of solvent frequencies;

The rephasing relaxation function is so named because in theand wo~?, the inverse solute frequency. The theory of the

short-time limit of " (t) O t2, A«(t,7) is peaked at = 2z, repre-

previous sectioH is based on the assumption of a separation

senting the rephasing of the macroscopic polarization associatedf time scales between solute and solvent, namely, diyat

with a conventional photon ec#826 The factors carrying the
effects of solute dynamics on the echo signal are given by

X o(t:7) = 2N,*(0)[e® 7O — 1] + [N¥(6) +
N,*( 0)][eiArei[*21“"(r)*Zl“"(tfr)Jrl“”(t)] — 1] + [N,*(6) +
3Nl*( 0) + ZNO*( 0)][eiA(3r—2t)ei[—2F"(r)+l‘"(t)+2]‘”(t—z)] B 1]
(21)
Y,o(t,7) = 2[Ny(0) + 2N,(6) + No(0)][e'*( 2 el -0l —
1] + [Ny(0) + Nl(e)][eiA(t_T)ei[—ZF”(T)—ZT”(t—r)JrI“"(t)] 1+
[N,(6) — Nl(g)][e*iA(t*r)ei[*ZF"(r)+21“"(tfr)+r~(t)] —1] 2)
0=A(t— 27) (23)
Xar(t,7) = [N*(At) + 3N *(At) + 2Ng*(AD)] x
[eiA(T*Zt)ei[1"”('()+21“”(t71)] — 1]+ [NF(AD + NA(AY] x
[e—iArei[F”(t)—ZF"(t—r)] — 1]+ 2N2*(At)[e_irn(t) _1] (24
Y, (t,7) = [Ny(At) — N (At)][e A IO+l _ 97 4
[N,(AD) + Ny (At)][e" ¢l O72 0l — 17 4 2N, (Al +
2N, (At) + No(At][e™'e 0 — 1] (25)
N, = e (26)

The complex-valued functiorg; contribute oscillations imand
7 at multiples of the solute anharmonic frequensyto the

< . It is therefore valid in three limiting regimes: classical
solute and classical solvemt{ < wo~! < 1), quantum solute
and classical solveniwp™! < h < 1), and quantum solute
and quantum solventup™! < A < Sh). The first two regimes
were treated in ref 17. As discussed thErtde limit of motional
narrowing or rapid solvent-induced fluctuations of the spectro-
scopic transition frequené$25.28is attained forl < T, with

T, = 4mo/(F%), the pure dephasing tin?é2°30This quantity,
which represents the coherence decay time of a quantum solute
interacting with a low-frequency solvent, is independenkof
and hence should be regarded as classical mechahfddor

a classical solvenfi(> Sh) in the limit 1 < T,, the decay kernel

in eq 13 is linear in timel () — t/T,, and the echo signal decays
as a free induction decay, B()] O —27/T,. The opposite limit,

A > T,, represents the approach to static line broadening. In
ref 17, we compared echo calculations for classical and quantum
solutes with classical solvents in both the motional narrowing
and slow solvent limits. We found that quantum solute effects,
the deviations of a quantum calculation &f) from a fully
classical one, become more pronounced as the time scale of
the solvent increasés.

Calculations of the vibrational echo signal for a classical
solvent and classical and quantum solutes are shown in Figure
1, in which the solute anharmonicity is= 0.45, the friction is
7 = Mmowo, and the solvent time scaleis= 30wo~1. This value
of F corresponds to significant solute anharmonicity. For
example, the dimensionless bond anharmonicity of the CO
molecule, a chromophore in vibrational echo measureniénts,
at room temperature 8~ 0.1. This value of; corresponds to
moderate solutesolvent coupling® We verified by comparison
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Figure 1. Quantum solute effects in the vibrational echo sigha) Figure 2. Quantum solute and solvent effects in the vibrational echo
are shown for a Morse oscillator coupled to a harmonic solvent, with signal(z) are shown fof= = 0.1,4 = 6w¢ ™%, andy = mow, for Q =
dimensionless anharmonicify= 0.45, friction coefficient; = mowo 0.001 (classical limit, solid curvel) = 2 (long dash)Q = 5 (short
and solvent time scalé = 30w, 1. The classical limitQ = 0.001, is dash), andQ = 200 (dash-dot).

shown by the solid curve, and the importance of quantum solute
dynamics increases §3is raised toQ = 1 (dots),Q = 2 (long dash),

Q = 5 (short dash), an@) = 9 (dash-dot). The delay timer is
expressed in units abot.

solvent is completely classical mechanical. In principle, for
sufficiently largeQ values,Q > Awo, the echo signal will dis-
play the effects of quantum solvent dynamics. This limit is not
attainable for the parameters of Figure 1, because incregsing
a?t fixedF corresponds to decreasing the number of bound states
of the Morse oscillatot? To support at least three bound states,
the minimum number of states assumed in the theoretical
development of the previous sectidp,< 18/(7-2). This con-
straint does not permit access to the quantum solvent regime,

to numerical simulation of the classical vibrational eéHéthat

the theory is accurate for these parameter values in the classic
limit.1” The value of the classical dephasing time for these
parameters i$, = 19.8v0™ L. The valuel = 30wo~ was chosen

so thatd > T,, which signifies that this system corresponds to
line broadening intermediate between the limits of static line A
broadening and motional narrowing. As defined in eq 17, the Q> lw?’ fo.r the values ofl andF employeq n F|gur§ L

echo signalS(r) oscillates at a frequency close to the solute  Examination of quantum solvent effects in the regi@e-
frequencywo, as a consequence of the assumption of impulsive A@o requires decreasing the dimensionless anharmorfictyd
excitation by laser pulses of duration short compared to the the solvent time scalé from the values employed in Figure 1,
solute vibrational period. Figure 1 and the subsequent figures Which brings the system closer to the limit of motional narrow-
show the normalized envelope of this oscillatory decay, iNd. Figure 2 shows the echo signal fer= 0.1, = 6wo,
Senl7)/S(0), defined by interpolating between the maxima of @nd#n = mMowo with Q = 0.001 (solid),Q = 2 (long dash)Q =

these rapid oscillations. In all figures, theaxis is scaled by 9 (short dash), an@ = 200 (dot-dash). The classical dephasing
the solute frequencipo. The importance of quantum effects is ~ time isT, = 400wo™*, so that the system is indeed approaching
controlled by the value o = Bhwo, which is varied fromQ the limit of moyona_l narrowing withl, > 1. As Q is increased

= 0.001 (solid) toQ = 1 (dots),Q = 2(long dash)Q = 5(short from the classical limit shown by the solid curve, the influence
dash), andQ = 9 (dot-dash). The curve witlQ = 0.001 of quantum effects on the solute dynamics increases, and the
represents the complete classical li@it— 0, in which both decay slows as also evident in the short-time dynamics of Figure
solute and solvent are treated classically. Since both thel. However, afQ becomes comparable in magnitudeztoo,
dimensionless anharmonicifyandQ depend on temperature, ~guantum solvent effects become apparent and the decay becomes
varying Q at fixed F as in Figure 1 does not correspond to faster with increasin@, as evident from the comparison of the
changing the temperature for a system with fixed Hamiltonian Q = 5 andQ = 200 calculations in Figure 2. Quantum solvent
parameters. Temperature variation at fixed parameters wouldeffects are embodied in the deviationsldft) in eq 13 from its
result from changing) andF at fixed F2Q. We choose to vary ~ finite i — 0 limit and in I"'(t), which vanishes a& — 0.

Q for fixed F, because comparing a calculation at nonZ@to I contributes to a frequency shift in the oscillationsS(f),

one in theQ — 0 limit for the same value of corresponds to ~ While I" contributes to ther dependence ofn(7). The
comparing a quantum calculation at specified temperature andcalculations in Figure 2 employed the full expression F¢t)

model parameters to a classical calculation for the same modelin €q 13, but the results are very similar to those obtained by
at that temperature. The echo signal in the classical limit displays settingI™” — 0.

decays at short and at longer times separated by a plateau, as is The asymptotic time dependence of the echo signal at long
characteristic of the classical echo for a system approachingtimes for a quantum solvent, depicted by e= 200 curve in

the limit of static line broadenin:1” Increasing the effect of  Figure 2, may be deduced from the long-time limitTt) in
guantum mechanics by increasi@ocauses the early decay to  eq 13. An asymptotic expansion 6ft) in even powers of 1/
become slower while the decay at longer times becomes moremay be generated by successive integrations by parts of eq 16.
rapid. Increasing from Q = 5 to Q = 9 has little effect on This expansion may then be substituted into the time derivative
the echo decay, because in this regitng > Q > 1. The value of the expression for the real part b{t) in eq 13,1"(t), to

of Q is sufficiently large that the solute is fully quantum yield an expansion of that quantity in odd powers df Bn
mechanical, but is still small enough that the low-frequency exponential echo decay implies th(t) is independent of time,
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T w o ——— — manifest in beats involving different transition frequencies in
0.9 M, 1 the Morse oscillator. For this reason, the calculation v@tkr
0.8} WS\ « 0.001 does not resemble a pure exponential decay over the time
0.7 NN N scale of Figure 3.
: We have considered quantum corrections to classical model-
-~ 0.6 ing of the vibrational echo from a solvated anharmonic oscil-
& 0.5} lator. The theory is valid for a separation of time scales between
= o a high-frequency solute and low-frequency solvent. In this case,
S 0.4} I the vibrational echo reflects the pure dephasing of the solute,
2 S and vibrational energy transfer between solute and solvent is
v ——Q=0.001 neglected. For this separation of time scales, we can consider
0.3|---q-=5 separately the effect of quantum corrections on solute and sol-
e Q=100 vent dynamics. Quantum effects in solute and solvent dynamics
..... Q=200 must be considered when the frequencies of the relevant vibra-
o2 L — tions are comparable to or larger theih, a condition com-
0 50 100 150 200 250 monly met in molecular systems at room temperature or below.

T However, the relatively small magnitudes of quantum correc-
Figure 3. The crossover to the classical mechanical asymptotic long t|0n§ to the V|br.at|o.nal echo from both solgte and solvent dy-
time decay of the vibrational echo sigrr) for a quantum systemis  namics shown in Figures-13 suggest that in the absence of
shown. As in Figure 2F = 0.1,A = 6w¢?, andn = mowo. Q = 0.001 significant vibrational energy transfer between solute and sol-
(thick solid curve),Q = 5 (dashed curve)Q = 100 (dotted curve), vent, classical or semiclassical mechanical treatments can pro-
andQ = 200 (dot-dash). Thin solid lines show the long-time limits  vide qualitatively correct descriptions of the nonlinear vibrational
of exponential decay fo = 100 andQ = 200. response of condensed phase molecular systems.
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