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The infrared echo measurement distinguishes among vibrational line broadening processes according to their
time scales. Rigorous computation of the echo signal for a realistic model requires quantum dynamical
calculations for large anharmonic systems. The challenges posed by such calculations motivate the use of
classical mechanical or semiclassical approximations. The application of such approaches to compute the
vibrational echo signal depends on the nature and magnitude of quantum effects on the echo observable. We
quantify these effects for a generic model of an anharmonic oscillator coupled to a harmonic solvent in the
regimes of classical solvent and classical solute, classical solvent and quantum solute, and quantum solvent
and quantum solute.

Introduction

Coherent infrared spectroscopies represent analogs of multiple
pulse magnetic resonance techniques.1-9 The vibrational echo,
the analog of the spin echo, probes the loss of phase coherence
of a vibrational degree of freedom resulting from interactions
with its environment.2,3,8,9These dephasing dynamics encompass
both resonant and nonresonant energy transfer processes, as well
as adiabatic pure dephasing processes, in which phase coherence
is lost without transfer of vibrational energy. Two and three
pulse vibrational echo measurements have been applied to probe
configurational dynamics in biomolecules and other liquid state
systems.2,3,8,9 Complete interpretation of such measurements
requires the modeling of the nonlinear vibrational response of
large anharmonic systems with an atomic level of detail.8-13

Since full quantum dynamical calculations for such systems are
not feasible, practical calculations must make use of classical
mechanical14-16 or semiclassical treatments. It is therefore
necessary to analyze the nonlinear response of model anhar-
monic systems17,18 that are sufficiently simple to permit both
quantum and classical treatments in order to understand the
nature of quantum mechanical effects, and to map out the
regimes of applicability of less than fully quantum mechanical
dynamical approaches.

We have previously computed the vibrational echo signal for
such a model: a Morse oscillator coupled to a harmonic solvent
with an interaction that is bilinear in solute and solvent coor-
dinates.17 We assumed a separation of time scales between a
high-frequency solute and a low-frequency solvent, so that only
pure dephasing processes were included. In that treatment, the
solvent was represented in the classical mechanical limit, and
solute parameters were varied from a fully classical regime to
a completely quantum mechanical one. The theory of ref 17
was shown to be quantitatively accurate in the fully classical
limit by comparison with numerically exact classical mechanical
calculations15 of the vibrational echo. We demonstrated17 that
purely classical mechanical echo calculations are qualitatively
correct for a high-frequency and nominally quantum mechanical
solute coupled to a classical solvent. This work elucidated the

effects of quantum mechanical solute dynamics on the echo
observable. In the present work, we investigate the role of quan-
tum mechanical solvent dynamics on the echo signal, by gener-
alizing the treatment of ref 17 to compute vibrational echoes
for a quantum anharmonic oscillator interacting with a quantum
solvent.

Vibrational Echo from a Solvated Oscillator

We treat a Morse oscillator19 linearly coupled to a harmonic
solvent with the Hamiltonian,

Momentum, coordinate, and mass are denotedp̂, q̂, andm0 for
the solute, andp̂ν, q̂ν, andmν for solvent degrees of freedom.
The conventional parameters of the Morse potential have been
reexpressed in terms ofω0, the harmonic frequency,17 and∆,
the difference between then f n + 1 andn + 1 f n + 2 tran-
sition frequencies of an unsolvated Morse oscillator. In ref 17,
we developed an analytical theory for the vibrational echo of
this model, based on four assumptions. First, the solute fre-
quency is higher than relevant solvent frequencies,ω0 . ων.
Within this assumption, the echo is governed by adiabatic, pure
dephasing processes, and the contributions of resonant energy
transfer between solute and solvent are negligible. Second, the
adiabatic solvent Hamiltonian resulting from the first assumption
is evaluated to lowest order in solute-solvent couplingcν. Third,
the solute anharmonicity is assumed to be small,∆ , ω0.
Fourth, the solvent is taken to be classical mechanical; the
thermal time scaleâp, with â ) 1/kBT, is assumed to be small
compared to any relevant solvent time scale. Here, we generalize
the development of ref 17 by computing the third-order response
function for the model of eq 1 retaining the first three assump-
tions just described, but discarding the fourth assumption of a
classical mechanical solvent.† Part of the special issue “A. C. Albrecht Memorial Issue”.
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We briefly summarize the generalization of the vibrational
echo calculation in ref 17. To lowest order in solute-solvent
coupling, the adiabatic solvent Hamiltonian associated with the
nth solute excited state is

The identity operator in the space of solvent states is denoted
Î, and| n〉 represents an energy eigenstate of the isolated solute.
The electric polarizationP(t) generating the signal in a third-
order nonlinear optical measurement such as the vibrational echo
may be computed17,20from the third-order response function,20-24

R(3)(t1,t2,t3), in which the tj denote elapsed times between
successive interactions with the classical electric fieldE(t),

The signal in a two-pulse echo measurement in the limit of
impulsive excitation may be computed from this response
function with t1 ) τ, the delay time between excitation pulses,
t2 ) 0, andt3 ) t - τ, with t the detection time. This quantity
is related to equilibrium correlation functions of the dipole
operatorµ̂ by20

with Im denoting the imaginary part of a complex number.
Angle brackets denote an average over the thermal density
matrix.

Within the adiabatic approximation of eq 2, the thermal
average over the harmonic solvent degrees of freedom in eqs
6-8 may be performed analytically.17 With an additional
assumption of weak anharmonicity, as detailed in eq 23 of ref
17, the relevant dipole correlation functions are given by

The thermal average of a quantitybn over bound states of the
isolated solute is given by

The indexnmax is the quantum number of the highest energy
bound state of the Morse oscillator. The complex-valued solvent
relaxation kernelΓ(t) is defined by

The classical mechanical solvent friction kernel25 η(t) is
defined in eq 15 and a dimensionless, temperature-dependent
solute anharmonicityF is given in eq 14. Equation 16
contains the cosine transform of the friction kernel,η̂(ω) )
∫0

∞ dt cos(ωt) η(t). Replacement of the relaxation kernelΓ(t)
with its real-valuedp f 0 limit yields the approximation to the
response function employed in ref 17. We evaluate the dipole
matrix elements in eqs 9-11 by taking the dipole operator to
be proportional to the coordinate,µ̂ ) e0q̂. These matrix
elements are evaluated in the harmonic oscillator limit, in
keeping with the assumption of low anharmonicity.17

The signalS(τ) in the two-pulse vibrational echo in the limit
of impulsive excitation is related to a complex-valued temporally
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slowly varying electric polarization amplitude20 P̃(t,τ) by

This polarization is connected to the response function byP̃(t,τ)
) A3exp[iΩ(t - 2τ)]R(3)(τ,0,t-τ), with A representing the time-
integrated electric field amplitude andΩ denoting the central
frequency of an excitation pulse. This expression is evaluated
by retaining terms that oscillate int at Ω - ω0 and neglecting
terms that oscillate int at Ω + ω0. Here, we setΩ ) ω0. For
the response function in eqs 9-11, this polarization amplitude
takes the form

analogous to eq 40 of ref 17. The contribution to the echo decay
from solvent dynamics is contained within therephasingand
nonrephasingsolvent relaxation functions,20 Λre(t,τ) andΛnr(t),
while the solute contribution to the echo dynamics is contained
within the complex-valued functionsXre(t,τ), Yre(t,τ), Xnr(t,τ),
andYnr(t,τ). The real and imaginary parts of a complex-valued
quantity are defined byX ) X′ + iX′′.

The solvent relaxation functions are given by

The rephasing relaxation function is so named because in the
short-time limit ofΓ′(t) ∝ t2, Λre(t,τ) is peaked att ) 2τ, repre-
senting the rephasing of the macroscopic polarization associated
with a conventional photon echo.20,26 The factors carrying the
effects of solute dynamics on the echo signal are given by

The complex-valued functionsNj contribute oscillations int and
τ at multiples of the solute anharmonic frequency∆ to the

electric polarization. For the calculations presented in the next
section,Nj is evaluated from eqs 12 and 26 in a harmonic
approximation in whichnmax f ∞ andεn f npω0. This approxi-
mation yields analytic expressions forNj and is consistent with
the low anharmonicity approximation made elsewhere.17 Com-
plete specification of the model of eq 1 requires identification
of the friction kernel25 η(t). We consider the limit of a continuum
solvent with friction kernel appropriate to an Ohmic density of
states with an exponential cutoff in frequency,27

For this choice,η̂(ω) ) η exp(-λω). The solvent time scaleλ
is a measure of the width of the distribution of solvent fre-
quencies. The classical solvent limit of ref 17 is recovered by
taking theâp , λ limit of eq 16 in whichú(t) is proportional
to the classical friction,ú(t) f 2η(t)/âp. Substitution of this
result into eq 13 results in a real-valuedΓ(t) that is independent
of p. The calculations of the echo signal in ref 17 were per-
formed using eqs 17 and 18 withΓ′(t) in eqs 19 and 20 replaced
by its p f 0 limit, and Γ′′(t) in eqs 21, 22, 24, and 25 set to
zero. In the next section, we present calculations ofS(τ) using
the full quantum expression forΓ(t) in eq 13.

Numerical Results

The importance of quantum mechanics to the vibrational echo
signal for the model specified by eqs 1 and 27 is determined
by the relative magnitudes of three time scales:âp, the quantum
mechanical thermal time scale;λ, the time scale in eq 27 that
determines the width of the distribution of solvent frequencies;
and ω0

-1, the inverse solute frequency. The theory of the
previous section17 is based on the assumption of a separation
of time scales between solute and solvent, namely, thatω0

-1

, λ. It is therefore valid in three limiting regimes: classical
solute and classical solvent (âp , ω0

-1 , λ), quantum solute
and classical solvent (ω0

-1 , âp , λ), and quantum solute
and quantum solvent (ω0

-1 , λ , âp). The first two regimes
were treated in ref 17. As discussed there,17 the limit of motional
narrowing or rapid solvent-induced fluctuations of the spectro-
scopic transition frequency20,26,28 is attained forλ , T2, with
T2 ) 4m0/(F2η), the pure dephasing time.27,29,30This quantity,
which represents the coherence decay time of a quantum solute
interacting with a low-frequency solvent, is independent ofp,
and hence should be regarded as classical mechanical.15,30 For
a classical solvent (λ . âp) in the limit λ , T2, the decay kernel
in eq 13 is linear in time,Γ(t) f t/T2, and the echo signal decays
as a free induction decay, ln[S(τ)] ∝ -2τ/T2. The opposite limit,
λ . T2, represents the approach to static line broadening. In
ref 17, we compared echo calculations for classical and quantum
solutes with classical solvents in both the motional narrowing
and slow solvent limits. We found that quantum solute effects,
the deviations of a quantum calculation ofS(τ) from a fully
classical one, become more pronounced as the time scale of
the solvent increases.17

Calculations of the vibrational echo signal for a classical
solvent and classical and quantum solutes are shown in Figure
1, in which the solute anharmonicity isF ) 0.45, the friction is
η ) m0ω0, and the solvent time scale isλ ) 30ω0

-1. This value
of F corresponds to significant solute anharmonicity. For
example, the dimensionless bond anharmonicity of the CO
molecule, a chromophore in vibrational echo measurements,2,8

at room temperature isF ≈ 0.1. This value ofη corresponds to
moderate solute-solvent coupling.16 We verified by comparison

η(t) ) 2η
π

λ
λ2 + t2

(27)

S(τ) ≡ ∫τ

∞
dt |P̃(t,τ)|2 (17)
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4

4m0
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Λnre
-2iω0τ [Xnr′′ + Ynr′′ + i(Xnr′ - Ynr′)]} (18)

Λre(t,τ) ) exp[- 2Γ′(τ) - 2Γ′(t - τ) + Γ′(t)] (19)

Λnr(t) ) exp[-Γ′(t)] (20)

Xre(t,τ) ) 2N2*(θ)[e2iΓ′′(τ)-iΓ′′(t) - 1] + [N2*(θ) +

N1*(θ)][ei∆τei[-2Γ′′(τ)-2Γ′′(t-τ)+Γ′′(t)] - 1] + [N2*(θ) +

3N1*(θ) + 2N0*(θ)][ei∆(3τ-2t)ei[-2Γ′′(τ)+Γ′′(t)+2Γ′′(t-τ)] - 1]
(21)

Yre(t,τ) ) 2[N2(θ) + 2N1(θ) + N0(θ)][ei∆(t-2τ)ei[2Γ′′(τ)-Γ′′(t)] -

1] + [N2(θ) + N1(θ)][ei∆(t-τ)ei[-2Γ′′(τ)-2Γ′′(t-τ)+Γ′′(t)] - 1] +

[N2(θ) - N1(θ)][e-i∆(t-τ)ei[-2Γ′′(τ)+2Γ′′(t-τ)+Γ′′(t)] - 1] (22)

θ ) ∆(t - 2τ) (23)

Xnr(t,τ) ) [N2*(∆t) + 3N1*(∆t) + 2N0*(∆t)] ×
[ei∆(τ-2t)ei[Γ′′(t)+2Γ′′(t-τ)] - 1] + [N2*(∆t) + N1*(∆t)] ×

[e-i∆τei[Γ′′(t)-2Γ′′(t-τ)] - 1] + 2N2*(∆t)[e-iΓ′′(t) - 1] (24)

Ynr(t,τ) ) [N2(∆t) - N1(∆t)][e-i∆(t-τ)ei[Γ′′(t)+2Γ′′(t-τ)] - 1] +

[N2(∆t) + N1(∆t)][ei∆(t-τ)ei[Γ′′(t)-2Γ′′(t-τ)] - 1] + 2[N2(∆t) +

2N1(∆t) + N0(∆t)][ei∆te-iΓ′′(t) - 1] (25)

Nj(x) ≡ 〈njeinx〉n (26)
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to numerical simulation of the classical vibrational echo15,16that
the theory is accurate for these parameter values in the classical
limit.17 The value of the classical dephasing time for these
parameters isT2 ) 19.8ω0

-1. The valueλ ) 30ω0
-1 was chosen

so thatλ > T2, which signifies that this system corresponds to
line broadening intermediate between the limits of static line
broadening and motional narrowing. As defined in eq 17, the
echo signalS(τ) oscillates at a frequency close to the solute
frequencyω0, as a consequence of the assumption of impulsive
excitation by laser pulses of duration short compared to the
solute vibrational period. Figure 1 and the subsequent figures
show the normalized envelope of this oscillatory decay,
Senv(τ)/S(0), defined by interpolating between the maxima of
these rapid oscillations. In all figures, theτ axis is scaled by
the solute frequencyω0. The importance of quantum effects is
controlled by the value ofQ ≡ âpω0, which is varied fromQ
) 0.001 (solid) toQ ) 1 (dots),Q ) 2(long dash),Q ) 5(short
dash), andQ ) 9 (dot-dash). The curve withQ ) 0.001
represents the complete classical limitQ f 0, in which both
solute and solvent are treated classically. Since both the
dimensionless anharmonicityF andQ depend on temperature,
varying Q at fixed F as in Figure 1 does not correspond to
changing the temperature for a system with fixed Hamiltonian
parameters. Temperature variation at fixed parameters would
result from changingQ andF at fixedF2Q. We choose to vary
Q for fixed F, because comparing a calculation at nonzeroQ to
one in theQ f 0 limit for the same value ofF corresponds to
comparing a quantum calculation at specified temperature and
model parameters to a classical calculation for the same model
at that temperature. The echo signal in the classical limit displays
decays at short and at longer times separated by a plateau, as is
characteristic of the classical echo for a system approaching
the limit of static line broadening.16,17 Increasing the effect of
quantum mechanics by increasingQ causes the early decay to
become slower while the decay at longer times becomes more
rapid. IncreasingQ from Q ) 5 to Q ) 9 has little effect on
the echo decay, because in this regimeλω0 > Q > 1. The value
of Q is sufficiently large that the solute is fully quantum
mechanical, but is still small enough that the low-frequency

solvent is completely classical mechanical. In principle, for
sufficiently largeQ values,Q . λω0, the echo signal will dis-
play the effects of quantum solvent dynamics. This limit is not
attainable for the parameters of Figure 1, because increasingQ
at fixedF corresponds to decreasing the number of bound states
of the Morse oscillator.19 To support at least three bound states,
the minimum number of states assumed in the theoretical
development of the previous section,Q < 18/(7F2). This con-
straint does not permit access to the quantum solvent regime,
Q > λω0, for the values ofλ andF employed in Figure 1.

Examination of quantum solvent effects in the regimeQ >
λω0 requires decreasing the dimensionless anharmonicityF and
the solvent time scaleλ from the values employed in Figure 1,
which brings the system closer to the limit of motional narrow-
ing. Figure 2 shows the echo signal forF ) 0.1, λ ) 6ω0

-1,
andη ) m0ω0 with Q ) 0.001 (solid),Q ) 2 (long dash),Q )
5 (short dash), andQ ) 200 (dot-dash). The classical dephasing
time isT2 ) 400ω0

-1, so that the system is indeed approaching
the limit of motional narrowing withT2 . λ. As Q is increased
from the classical limit shown by the solid curve, the influence
of quantum effects on the solute dynamics increases, and the
decay slows as also evident in the short-time dynamics of Figure
1. However, asQ becomes comparable in magnitude toλω0,
quantum solvent effects become apparent and the decay becomes
faster with increasingQ, as evident from the comparison of the
Q ) 5 andQ ) 200 calculations in Figure 2. Quantum solvent
effects are embodied in the deviations ofΓ′(t) in eq 13 from its
finite p f 0 limit and in Γ′′(t), which vanishes asp f 0.
Γ′′ contributes to a frequency shift in the oscillations ofS(τ),
while Γ′ contributes to theτ dependence ofSenv(τ). The
calculations in Figure 2 employed the full expression forΓ(t)
in eq 13, but the results are very similar to those obtained by
settingΓ′′ f 0.

The asymptotic time dependence of the echo signal at long
times for a quantum solvent, depicted by theQ ) 200 curve in
Figure 2, may be deduced from the long-time limit ofΓ(t) in
eq 13. An asymptotic expansion ofú(t) in even powers of 1/t
may be generated by successive integrations by parts of eq 16.
This expansion may then be substituted into the time derivative
of the expression for the real part ofΓ(t) in eq 13, Γ̇′(t), to
yield an expansion of that quantity in odd powers of 1/t. An
exponential echo decay implies thatΓ̇′(t) is independent of time,

Figure 1. Quantum solute effects in the vibrational echo signalS(τ)
are shown for a Morse oscillator coupled to a harmonic solvent, with
dimensionless anharmonicityF ) 0.45, friction coefficientη ) m0ω0

and solvent time scaleλ ) 30ω0
-1. The classical limit,Q ) 0.001, is

shown by the solid curve, and the importance of quantum solute
dynamics increases asQ is raised toQ ) 1 (dots),Q ) 2 (long dash),
Q ) 5 (short dash), andQ ) 9 (dash-dot). The delay timeτ is
expressed in units ofω0

-1.

Figure 2. Quantum solute and solvent effects in the vibrational echo
signalS(τ) are shown forF ) 0.1,λ ) 6ω0

-1, andη ) m0ω0 for Q )
0.001 (classical limit, solid curve),Q ) 2 (long dash),Q ) 5 (short
dash), andQ ) 200 (dash-dot).
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so thatΓ̇′(t) has the physical significance of an instantaneous
dephasing rate:

The long time limit of eq 28,T2
-1, is constant, indicating an

asymptotic exponential decay of the echo at long times. The
decay constant is independent ofp, as is thet-1 correction which
describes the approach to the long time exponential limit for
both classical and quantum solvents. The largest correction to
the long time limit ofΓ̇′(t) containingp is the t-3 term in eq
28. In the long time limit for both classical and quantum
solvents, the echo decay is exponential in time and controlled
by the classical pure dephasing timeT2.29 For the Ohmic spectral
density employed here, at sufficiently long time, the echo
observable will be dominated by interactions of the solute with
solvent modes of sufficiently low frequency to be treated
classically. In the strongly quantum regime in which both solute
and solvent are quantum mechanical, the echo decay becomes
classical forτ greater than a crossover timetx ) âp/61/2 at which
the t-1 and t-3 terms in eq 28 are comparable in magnitude.
Figure 3 shows a semilogarithmic plot of the echo signal forF
) 0.1, λ ) 6ω0

-1, andη ) m0ω0 (as in Figure 2), withQ )
0.001 (thick solid),Q ) 5 (long dash),Q ) 100 (dots), andQ
) 200 (dot-dash). Thin solid lines with slope-2/T2 show the
long-time asymptotic decays forQ ) 100 andQ ) 200, pre-
dicted in eq 28. Consistent with the preceding analysis, Figure
3 shows that the crossover to classical dephasing dynamics
occurs at increasing values ofτ for increasingQ. For Q ) 100
andQ ) 200,tx ≈ 41ω0

-1, andtx ≈ 82ω0
-1, respectively. Figure

3 shows that these times correspond to the crossover between
short-time quantum dynamics and long-time classical dynamics.
This analysis suggests that asQ is decreased, the echo decay
in the motional narrowing limit will approach an exponential
decay at decreasing values ofτ. Indeed, forQ ) 5 in Figure 3,
this scenario appears valid. However, forQ < 1, the solute
approaches the classical limit, and the echo signal reflects not
only damping from the solvent, but solute dynamics, which are

manifest in beats involving different transition frequencies in
the Morse oscillator. For this reason, the calculation withQ )
0.001 does not resemble a pure exponential decay over the time
scale of Figure 3.

We have considered quantum corrections to classical model-
ing of the vibrational echo from a solvated anharmonic oscil-
lator. The theory is valid for a separation of time scales between
a high-frequency solute and low-frequency solvent. In this case,
the vibrational echo reflects the pure dephasing of the solute,
and vibrational energy transfer between solute and solvent is
neglected. For this separation of time scales, we can consider
separately the effect of quantum corrections on solute and sol-
vent dynamics. Quantum effects in solute and solvent dynamics
must be considered when the frequencies of the relevant vibra-
tions are comparable to or larger thankT/p, a condition com-
monly met in molecular systems at room temperature or below.
However, the relatively small magnitudes of quantum correc-
tions to the vibrational echo from both solute and solvent dy-
namics shown in Figures 1-3 suggest that in the absence of
significant vibrational energy transfer between solute and sol-
vent, classical or semiclassical mechanical treatments can pro-
vide qualitatively correct descriptions of the nonlinear vibrational
response of condensed phase molecular systems.
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Figure 3. The crossover to the classical mechanical asymptotic long
time decay of the vibrational echo signalS(τ) for a quantum system is
shown. As in Figure 2,F ) 0.1,λ ) 6ω0

-1, andη ) m0ω0. Q ) 0.001
(thick solid curve),Q ) 5 (dashed curve),Q ) 100 (dotted curve),
andQ ) 200 (dot-dash). Thin solid lines show the long-time limits
of exponential decay forQ ) 100 andQ ) 200.

Γ̇′(t) ≈ T2
-1[1 - θ1/t + (θ3/t)

3 + O(t-5)] (28)

θ1 ) 2λ/π (29)

θ3 ) λ[(2/3π)(1 + (âp)2/(2λ2)]1/3 (30)
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